
3、试卷题型结构全卷一般由十个大题组成,具体分布为计算题:5~6小题,每题10分,约50~60分分析论述题(包括证明、讨论、综合计算):5~6大题,每题15~20分,约75~100分

三、考查范围(一)多项式1.一元多项式的整除、大公因式、带余除法公式、互素、不可约、因式分解、重因式、根及重根、多项式函数的概念及判别;2.复根存在定理(代数基本定理);3.根与系数关系;4.一些重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质,整系数多项式的因式分解定理等;5.运用多项式理论证明有关命题,如与多项式的互素和不可约多项式的性质有关的问题的证明与应用;6.用多项式函数方法证明有关结论。(二)行列式1.n-级排列、对换、n-级排列的逆序及逆序数和奇偶性;2.n-阶行列式的定义,基本性质及常用计算方法(如三角形

1、试卷满分及考试时间本试卷满分150分,考试时间为180分钟。

(二)行列式1.n-级排列、对换、n-级排列的逆序及逆序数和奇偶性;2.n-阶行列式的定义,基本性质及常用计算方法(如三角形法、加边法、降阶法、递推法、按一行或一列展开法、Laplace展开法、Vandermonde行列式法);3.Vandermonde行列式;4.行列式的代数余子式。

(八)λ-矩阵1.λ-矩阵的初等变换、标准型、行列式因子、不变因子、初等因子及三种因子之间的关系;2.矩阵的Jordan标准形的存在唯一性定理的证明及其应用。

(四)矩阵理论1.矩阵基本运算、分块矩阵运算及常用分块方法并用于证明与矩阵相关的结论,如有关矩阵秩的不等式;2.初等矩阵、初等变换及其与初等矩阵的关系和应用;3.矩阵的逆和矩阵的等价标准形的概念及计算,矩阵可逆的条件及其与矩阵的秩和初等矩阵的关系,伴随矩阵概念及性质;4.行列式乘积定理;5.矩阵的转置及相关性质;6.一些特殊矩阵的常用性质,如,对角阵、三角阵、三对角阵、对称矩阵、反对称矩阵、幂等矩阵、幂零矩阵、正交矩阵等;7.矩阵的迹、方阵的多项式;8.矩阵的常用分解,如等价分解、满秩分解、实可逆矩阵的正交三角分解、约当分解;9.应用矩阵理论解决一些问题

(七)线性变换1.线性变换定义与运算及其矩阵表示;2.矩阵的特征多项式和小多项式及其有关性质;3.线性变换及其对应矩阵的特征值和特征向量的概念和计算;4.线性变换及其矩阵的线性无关特征向量的判别和大个数及特征子空间;5.实对称矩阵的特征值和特征向量的性质;6.矩阵相似的概念及同一个线性变换关于不同基的矩阵之间的关系;7.线性变换的不变子空间、核、值域的概念及关系和计算;8.线性变换和矩阵可对角化的概念和条件;9.Hamilton-Caylay定理。

(五)二次型理论1.二次型及其标准形、规范形的概念和计算,惯性定理及其应用;2.实二次型或实对称矩阵正定、半正定、负定、半负定的概念及判定条件和应用;3.实二次型在合同变换下的规范形以及在正交变换下的特征值标准型的求法。

一、考查目标高等代数是大学数学系本科学生的基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包括多项式理论、行列式、线性方程组、矩阵理论、二次型理论、线性空间、线性变换、λ-矩阵、欧氏空间。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。

二、考试形式和试卷结构1、试卷满分及考试时间本试卷满分150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试3、试卷题型结构全卷一般由十个大题组成,具体分布为计算题:5~6小题,每题10分,约50~60分分析论述题(包括证明、讨论、综合计算):5~6大题,每题15~20分,约75~100分